

Lab 1
Team 10

Rabi Alaya, Caiden Atienza, Nick Hageman, Nate Schaefer

October 4th

ECE:4880

 1

Table of Contents

Design Documentation --- 2
System Level --- 2

Hardware Level -- 3

Software Level --- 4

Design Process and Experimentation -- 6

ESP32 vs Raspberry Pi Pico --- 6

OLED vs LCD-- 6

Rechargeable Power Bank vs AA Battery Pack --- 6

3D Printed Third Box vs Plastic Box --- 7

Test Report --- 10

Project Retrospective --- 18

Project Summary --- 18

Team Roles -- 18

Project Management --- 19

Appendix & References -- 20

 2

Design Documentation

System-level View:

Figure 1. A block diagram showing the design of the product.

System-level Description:

The system consists of a Raspberry Pi Pico W that collects temperature data from two

sensors. This data is displayed on an OLED screen and sent via HTTP POST requests to an

NodeJS backend every second. The backend stores the last 300 data points.

The frontend fetches this temperature data every second via GET requests to the NodeJS

backend. It then updates a real-time graph showing the last 300 data points. Users can toggle the

graph between Celsius and Fahrenheit.

Both physical buttons connected to the Pico W and the virtual buttons on the frontend

enable users to toggle each temperature sensor on or off. When a button is pressed, whether

physically or via the web interface, a GET request is sent to the NodeJS server which updates a

sensor states data structure that keeps track of the state (on/off) for each sensor. The Pico W

sends GET requests every second to retrieve the current state of each sensor, ensuring that the

OLED display accurately reflects whether each sensor is active.

 3

The backend enables users to configure temperature thresholds through the frontend.

When updated, the frontend sends an HTTP POST request to the backend, which continuously

monitors sensor data for any deviations from these thresholds. If the temperature crosses the

specified limits, the backend automatically sends an email alert to notify the user via their phone.

Both the email notifications and the thresholds are fully customizable through the frontend.

Overall, the system integrates hardware and software components to provide users with

real-time temperature monitoring, controlled sensor management, and automated alerts.

Hardware Description:

Figure 2. Circuit schematic showing the corresponding components used and their connections

to microcontroller.

The Raspberry Pi Pico is powered by a 4.5V AA battery pack, providing a stable DC

power source to the microcontroller. The power supply is regulated using a 7101 three-position

toggle switch, placed in series with the battery pack, allowing the user to control system power

between ON, OFF, and an intermediate state for low-power modes. A 1N4003 rectifier diode is

integrated into the circuit to prevent reverse current flow, ensuring that if the microcontroller is

also connected to an external power source, there is no risk of back-charging the batteries. This

diode has a forward voltage drop of approximately 0.7V, which is factored into the overall

voltage supply to the microcontroller.

 4

For temperature sensing, two DS18B20 digital thermometers are interfaced with GPIO

pins 3 and 7. The DS18B20 sensors communicate using a One-Wire protocol, which allows

multiple devices to be connected to a single data line. However, we opted to have each sensor

assigned to their own data line. To ensure proper communication and data integrity, each sensor

is accompanied by a 4.7kΩ pull-up resistor (R1 and R2) on the data lines, connected between the

data pin and the 3.3V rail. These pull-up resistors are critical for keeping the data line in a

defined high state when no data is being transmitted, preventing floating states.

Two TS611 pushbuttons are connected to GPIO pins 13 and 14, serving as user input

controls. These buttons are configured using internal pull-up resistors in the microcontroller,

ensuring that the pins are held in a high state when the button is unpressed. When a button is

pressed, the corresponding pin is pulled low allowing the microcontroller to detect the state

change and trigger the appropriate software event.

The system includes a 128x64 OLED display module connected via I2C communication

to GPIO pins 20 (SDA) and 21 (SCL). This display serves as the primary output for real-time

temperature readings from the DS18B20 sensors. The I2C protocol is ideal for this application

due to its simplicity and ability to communicate with multiple devices over just two wires. The

display operates at 3.3V, matching the output of the Pi’s voltage output pin.

Software Description:

• Raspberry Pi Pico W

1. Initialize Components:

a. Set up the temperature sensors, buttons, OLED display, and Wi-Fi connection.

2. Main Loop:

a. Read temperature values from both sensors.

b. Display the temperature on the OLED screen for each sensor that is currently

active (on).

c. Send the temperature data to the server.

d. Request the current sensor statuses (on or off) from the server to know whether to

display data for each sensor.

e. If a physical button is pressed, send a request to the server to toggle the

corresponding sensor on or off.

f. Wait for one second before repeating the process.

• Backend

1. Receive and store temperature data

a. Keep a record of the most recent 300 temperature readings for each sensor, both

in Celsius and Fahrenheit.

b. Track whether each sensor is currently active (on or off).

 5

2. Send Temperature Data to Frontend

a. Provide the frontend with the latest temperature data every second so that the

frontend can display the data in real-time and graph it.

3. Send Sensor Status Data to Raspberry Pi Pico W

a. Provide the Pico W with sensor status (on/off).

4. Send Email Alerts

a. Continuously check if the temperature readings exceed the user-defined

thresholds.

b. If any threshold is crossed, send an email alert to notify the user.

• Frontend

1. Get temperature updates

a. Get new temperature data from the backend every second

i. Update the graph with the new temperature values.

ii. Display the most recent temperature reading for each sensor on the page.

iii. Check the current sensor statuses (on or off) and update the display

accordingly.

2. Toggle Temperature Units

a. Allow the user to toggle between Celsius and Fahrenheit by pressing a button.

When toggled:

i. Convert the temperature data accordingly.

ii. Update the graph and the temperature readings on the page to reflect the

selected unit.

3. Toggle Sensor States

a. Provide buttons for the user to toggle each sensor on or off.

b. When the user presses a button, send a request to the server to change the sensor's

state and immediately update the display to reflect the new status.

4. Set Temperature Thresholds for Email Alerts

a. Allow the user to input minimum and maximum temperature thresholds.

b. When the user updates these thresholds, send the new values to the server so that

email alerts can be sent if the temperature goes outside of the specified range.

 6

Figure 3. Web server’s display for the user to watch current temperature values.

Design Process and Experimentation

ESP32 vs. Raspberry Pi Pico

During our planning process of the project, we made the decision to incorporate a

Raspberry Pi Pico into our system. Although the Arduino would have made the hardware

simpler, we had trouble preliminarily testing its connection with the Wi-Fi and attempting to

send data to the web server. When we pivoted to the Raspberry Pi Pico, the process of

exchanging data between the web server and third box was much easier to implement.

OLED vs. LCD

While developing our project, we intended to use an LCD display for the third box

display. The LCD screen seemed to bring us trouble during the development process. Something

seemed to keep going wrong with the initialization process for the LCD, preventing it from

working properly. We pivoted to using an OLED display, which was much easier to set up. The

OLED presented no problems throughout the rest of the development process.

Rechargeable Power Bank vs. AA Battery Pack

Choosing to power the Raspberry Pi Pico with a pack of 3 AA batteries instead of a USB

power bank was a practical decision for several reasons. First, the cost of AA batteries is lower

compared to a USB power bank, making it a more budget-friendly option, especially for smaller

projects. Additionally, AA batteries provide a direct and easily controlled power source to the

 7

input voltage of the Pico. This allowed for greater flexibility in managing power, including the

ability to cut power immediately when needed versus having to wire the switch to the 3V3 pin on

the Raspberry Pi. The Raspberry Pi Pico's power input was easy since it has a built-in voltage

regulator and could be powered from 1.8 to 5.5 volts.

3D Printed Box vs. Plastic Box

While planning the enclosure for our system, we initially considered using a plastic

Tupperware container, thinking it would be the simplest and quickest option. However, when we

attempted to cut holes for the temperature sensors and OLED display, we quickly encountered

difficulties. The cutting process was challenging, and the result looked unpolished. One team

member suggested 3D printing a custom box, which provided precise openings for the sensors

and display. This made the process much smoother and significantly improved the overall

presentation of the project. In addition, one concern with using Tupperware was the structural

integrity and how the implementation of the push buttons was going to hold up. By choosing to

3D print a box, we were able to design mounting holes for each of the components. The one

component that benefited significantly was the push buttons. The push buttons were press fitted

into the mounting holes and had center ledge to sit on. With this design, the buttons would stay

securely mounted and could still be wired to the raspberry pi through the designated pin channels

in the lid.

Figure 4. Cover of the third box represented in Bambu Lab software, before being 3D printed.

 8

Figure 5. Top of third box after implementation. Includes switch, OLED, and buttons. Sensor2

value is distorted from iPhone camera.

Figure 6. View of third box with insides exposed.

 9

Test Report

Requirements Test Procedure Test

Result

Comments Signature Test Date

2a Turn the third box on

and check if the LCD

display is on and

buttons/switch work.

Turn the box upside

down and back to

normal. Check that the

OLED display,

buttons, and switch

still work.

Pass Caiden A. 10/2

2a Turn the third box on

and check if the LCD

display is on and

buttons/switch work.

Drop the box from

bench height. Pick it

up and check that the

OLED display,

buttons, and switch

still work.

Pass Caiden A. 10/1

2b Turn the third box on.

Verify from the OLED

that both temperature

sensors are reading in

data. For each sensor,

unplug it and check

that the OLED displays

a message that the

corresponding sensor is

disconnected. Plug

each sensor back in

and verify that the

temperature is being

read from that sensor.

Pass Caiden A.

10/3

2c Turn the box on.

Verify that the box is

reading in temperatures

from both sensors.

Drop the box from

bench height. If the

Pass Caiden A.

10/3

 10

connectors aren’t

disconnected, verify

that the box is still

reading temperature. If

the connectors are

disconnected, connect

them and verify that

the box is still reading

temperature.

2d Turn the third box on.

Verify that it is reading

temperature from both

sensors. Unplug one of

the sensors and verify

that the OLED display

is still on. Grab the

other sensor and check

that the temperature is

rising. Plug the sensor

back in and do the

same procedure with

the other sensor.

Pass Caiden A.

10/2

3 Turn on the third box.

Verify that the OLED

is displaying

temperatures. Turn the

switch off. Verify that

the OLED does not

display temperatures.

Pass Caiden A.

9/27

3 Turn on the third box

and connect it to the

web server. Verify that

the web server is

displaying the current

temperatures. Turn the

switch off and verify

that the web server

stops displaying the

current temperatures.

Pass Nate S.

10/1

4a Turn the third box on

and verify that the

temperatures are being

displayed on the

OLED. Press a button

to turn a sensor off and

press it again to turn it

Pass Caiden A.

10/1

 11

on. Check that the

delay of the

temperature appearing

is not noticeable.

Repeat the same

process for the other

sensor.

4b Turn on the third box.

Verify that the OLED

display is clear and

easy to read. Verify

that temperature values

are displayed correctly.

Pass Caiden A.

9/23

4c Turn the third box on.

Press one button and

verify that the OLED

displays that the

corresponding sensor is

off and that the other

sensor is on. Press the

other button and verify

that both sensors are

off from the OLED.

Press the first button

and verify that the

corresponding sensor

turns on from the

OLED reading. Turn

the other sensor on by

pressing the other

button and verify that

both sensors are

reading temperature

values.

Pass Caiden A.

10/2

4d Turn on the third box.

Verify that both

temperature values are

being read in from the

OLED. Unplug one

sensor and verify that

the OLED displays that

the corresponding

sensor is errored out.

Repeat the same

process with the other

sensor.

Pass Caiden A.

10/2

 12

5ai Turn on the third box

and connect it to the

web server. Verify that

both temperature

values are being

displayed. Unplug one

of the sensors and

verify that a message

saying “unplugged

sensor” is being

displayed on the web

server. Repeat with the

other sensor.

Pass

 Nate S.

10/2

5aii Turn on the third box

and connect it to the

web server. Verify that

both temperature

values are being

displayed. Turn the

switch off and verify

that the web server

displays a “no data

available” message.

Pass

 Nate S. 10/2

5b Turn on the third box

and connect it to the

web server. Verify that

both temperature

values are being

displayed. Press the

button for one of the

sensors from the web

server. Verify that the

corresponding sensor

stops displaying its

readings for the web

server and OLED

within 1 second. Press

the web server button

again and verify that

the sensor readings are

displayed as usual.

Repeat the same

process with the other

sensor.

Pass

 Nick H.

10/1

5ci Turn on the third box

and connect it to the

Pass

 Nate S. 9/25

 13

web server. Verify that

both temperature

values are being

displayed on the web

server. Click the button

to switch between

degrees C and degrees

F. Verify that the

values change

correctly, and that the

orientation of the graph

matches the

requirement.

5cii Turn on the third box

and connect it to the

web server. Verify that

both temperature

values are being

displayed on the web

server. Verify that the

graph shifts every

second and if a new

value is recorded, it is

added on the right side.

Check that older values

scroll off the left side

of the graph.

Pass

 Nate S. 9/26

5ciii Turn on the third box

and connect it to the

web server. Verify that

both temperature

values are being

displayed on the web

server. Verify that the

temperature values

recorded over 300

seconds scroll off the

graph. Check that the

X axis of the graph is

labeled in “seconds

ago from the current

time”.

Pass

 Nate S. 9/26

5iv Turn on the third box

and connect it to the

web server. Verify that

both temperature

Pass

 Nick H. 9/23

 14

values are being

displayed on the web

server. Turn the switch

off for a few seconds.

Verify that the graph

continues to scroll

without displaying new

data. Turn the switch

back on. Check that the

graph starts displaying

the current data.

5v Turn on the third box

and connect it to the

web server. Verify that

both temperature

values are being

displayed on the web

server. Turn the switch

off for a few seconds

and then turn it back

on. After a few

seconds, verify that a

noticeable gap in the

graph is shown from

the time that the switch

was off.

Pass

 Nick H. 9/25

6 Turn on the third box

and connect it to the

web server. Start a

timer when the box is

turned on. Verify that

both temperature

values are being

displayed on the web

server before the timer

hits 10 seconds.

Pass

 Nick H. 9/25

7 Turn on the third box

and connect it to the

web server. Verify that

both temperature

values are being

displayed on the web

server. Set the upper

threshold to 5 degrees

above room

temperature and

Fail

Email is sent to

hardcoded

email; email

cannot be

changed by user.

Nate S. 10/4

 15

configure an email.

Hold a temperature

sensor in your hand

and check that the

reading goes above the

threshold and an email

is sent to the specified

email. Repeat the same

process with a lower

threshold of 5 degrees

below room

temperature and

putting the sensor in

water.

8b Turn on the third box

and connect it to the

web server. Verify that

both temperature

values are being

displayed on the web

server. Hold one of the

sensors in your hand

and verify that the

corresponding

temperature rises.

Repeat the process

with the other sensor.

Pass

 Nick H. 9/28

8c Turn the third box on

in the lab room. Verify

that the temperature

values are being

displayed. Verify that

the temperature

recorded is within 4

degrees of 22 degrees

Celsius.

Pass

 Rabi A. 9/27

8d Turn the third box on.

Verify that the

temperature values are

being displayed. Place

the sensors in a water-

ice mixture and verify

that the temperature

recorded is within 2

degrees of 0 degrees

Celsius.

Pass

 Rabi A. 9/27

 16

Project Retrospective

Project Summary

We succeeded in creating a third box that communicates with a web server to provide the

user with temperature values no later than 300 seconds ago. Using a web server based off

NodeJS, with JavaScript, and in the Raspberry Pi Pico: python code to read the sensors and send

HTTP requests between the Pi and the server.

Our planning phase ended up needing to be changed quite a bit. Using our agile

methodology, we were able to pivot quickly to save time implementing a different concept for a

solution. Some of the ways we had to pivot in our project were when we decided to use a

Raspberry Pi Pico instead of an Arduino, when we chose to use an OLED instead of an LCD for

the display, and when we made the decision to use our laptop’s local IP, rather than a service like

Ngrok.

The communication between our Pi and web server was the part of our lab that took the

longest for us. We had a lot of trouble trying to communicate between eduroam and UI-

DeviceNet. We chose to use a service like Ngrok that would give us an endpoint that our Pi was

able to communicate with. This worked for a while until we realized the limitations of it. There

was a limit to HTTP requests, about 120 per minute, which was not enough for us. Our solution

came when Noah announced the custom router for the class. We were then able to communicate

with the laptop’s local IP using this router.

In hindsight, we would have put more effort into our planning stage, so that we didn’t

need to be affected by pivoting in our project multiple times. Another thing would be to read the

requirements a bit more closely. We ended up losing points on the checkoff from not including a

text box to allow the user to specify an email. This issue could have been avoided with more

careful planning and clear communication in the early phase of the project.

Team Roles

- Rabi: Set up the Raspberry Pi Pico W with MicroPython. Wrote code to read in

temperature, connect to Wi-Fi, and send temperature data to the server.

- Caiden: Oversaw the hardware aspects and was responsible for integrating the hardware

into the third box. His efforts included powering the raspberry pi, soldering the wires, and

designing/3D printing the third box.

- Nick: Developed the frontend and backend for the server. Handled the graphing for

temperature data, implemented the Celsius to Fahrenheit toggle button, and managed the

email alerts system.

- Nate: Handled sprint planning and created the Gantt chart. Wrote all the test cases.

Implemented code for sensor statuses on web server.

 17

Project Management

We used an agile based approach for our project. We did this because we wanted to be

able to change our requirements if we learned that something we planned to implement would be

a lost cause, which ultimately ended up happening multiple times. Some examples of this are

when we had issues connecting to the Wi-Fi with the Arduino, or when the LCD stopped

functioning as we wanted it to. When we pivoted from the Arduino to using the Raspberry Pi

Pico, we started having issues with the LCD, eventually finding that an OLED display may work

better for us. Both issues were easily fixed after we were able to pivot quickly due to our agile

methodology. Using it, we were able to modify our requirements accordingly so as not to waste

time.

As for our management, we planned two sprints that each took two weeks. Our first

sprint, we met around once a week on Tuesdays to discuss our work and continue working on the

project together. The intention of our first sprint was to write out a game plan for what our

product would work and start its implementation. Our intention was to have the Raspberry Pi

Pico display temperatures on the third box display, communicating with the web server and the

web server displaying that data on the graph. We achieved this goal but had to cut some corners

in order to do so. The second sprint was where we refined our logic to satisfy the requirements

completely and configured our project to work correctly; we also tested our product during this

time. We met multiple times a week for a few hours each time to do this during our second

sprint. As for a methodology, we prefer using agile rather than waterfall, as it allowed us to

dynamically pivot towards new implementations for our project.

Figure 6. Gantt Chart for Lab 1 Timeline

 18

Appendix & References

Raspberry Pi Pico docs: https://www.raspberrypi.com/documentation/microcontrollers/pico-

series.html

Raspberry Pi Pico Datasheet: https://datasheets.raspberrypi.com/pico/pico-datasheet.pdf

NodeJS docs: https://nodejs.org/docs/latest/api/

Nodemailer for emailing: https://nodemailer.com/

Jira: https://uiowa-senior-design.atlassian.net/jira/software/projects/SCRUM/boards/1/timeline

PTC Creo 10.0: https://www.ptc.com/

Bambu Lab, Bambu Studio, Version 2.0: https://bambulab.com/en-us

https://www.raspberrypi.com/documentation/microcontrollers/pico-series.html
https://www.raspberrypi.com/documentation/microcontrollers/pico-series.html
https://datasheets.raspberrypi.com/pico/pico-datasheet.pdf
https://nodejs.org/docs/latest/api/
https://nodemailer.com/
https://uiowa-senior-design.atlassian.net/jira/software/projects/SCRUM/boards/1/timeline
https://www.ptc.com/
https://bambulab.com/en-us

